

The Comus Group of Companies

Actuation of Reed Switches with a Permanent Magnet (Examples of switching with the use of a moving magnet.)

Direct Actuation

A magnet moved perpendicularly towards and away from a Reed Switch turns it off and on once.

Magnet

A magnet moved parallel to a Reed Switch operates it from one to three times.

A magnet swung towards and away from a Reed Switch operates it once.

A ring magnet moved parallel to a Reed Closed - Den Switchs' axis operates it from one to three times

In General:

For all Reed Switches the standard pull-in sensitivity is given in the table. Other pull-in sensitivities are available on request.

Contact Form A

Contact Form E

Contact Form B or C

Normally Closed Contact (Form B)

All dimensions are nominal, in millimetres unless otherwise stated. If further information is required, individual datasheets are available on our websites, and on CD. As part of the groups policy of continued product improvement, specifications may change without notice. Our sales office will be pleased to help you with the latest information on our products.

Rotation:

Examples of switching through rotational movement.

Indirect Actuation: Shielding

With the stationary arrangement of a Reed Switch and magnet, the contact Reeds are closed. Should the magnetic field be diverted away from the Reed Switch by a shield of ferro magnetic material placed between the switch and the magnet, the contacts will open. When the shield is removed, the contact Reeds become magnetically actuated and close.

Pull-in Sensitivity

The given pull-in sensitivity of the Reed Switch has a test equipment tolerance of \pm 2 AT.

Life Expectancy:

The life expectancy of a reed switch is dependent upon the load being switched. At maximum rated loads life expectancy is approximately 106 switching cycles. Lower load ratings can increase the life expectancy up to 5x108 operations. The mechanical life expectancy can reach at least 109 operations. Through the switching of inductive, capacitive, and lamp loads, the life expectancy is considerably reduced due to exceeding the specified maximum current.

The Comus Group of Companies

The Comus International group of companies consists of:

Comus International 454 Allwood Road Clifton New Jersey 07012 U.S.A

Tel: (1)973 - 777 - 6900 Fax:(1)973 - 777 - 8405 email: info@comus-intl.com internet: http://www.comus-intl.com

180

Comus International SARL Immeuble 'Les luilliottes 31 Cours des Juilliottes F-94700 Maisons-Alfort France

Tel: +33 (0)| 43 96 86 10 Fax: +33 (0)1 43 96 86 11 email: info@comus.fr internet: http://www.comus.fr

Assemtech Europe Limited Unit 7, Rice Bridge Industrial Estate Thorpe - Le - Soken Essex England COI6 OHL Tel: +44 (0)1255 862236 Fax: +44 (0)1255 862014 email: sales @ assemtech.co.uk internet: http://www.assemtech.co.uk Ø 2

Switching Technologies Gunther B-9, B-10, & C-1 Special Economic Zone (MEPZ) Kadapperi Tambaram Chennai 600 045 India Tel: +91 44 22628093 Fax: +91 44 22628271 email: stgltd@eth.net

Comus Belgium BVBA Overhaamlaan 40 B-3700 Tongeren Belgium

Tel: +32 (0)12 390400 Fax: +32 (0)12 235754 email: info@comus.be internet: http://www.comus.be

Comus Electronics India No 74A Anbu Street Gandhi Nagar Ekkattuthangal Chennai 600 097 TamilNadu India Tel: +91 44 22628198 Fax: +91 44 22628271 email: chitra@comus-intl.com internet: http://www.comusindia.com **COMUS** The Comus Group of Companies

Reed Switches

Com/1/Sep06/Iss.2

DESCRIPTION

COMUS

Reed Switches consist of two or three ferromagnetic blades (or reeds) hermetically sealed inside a glass envelope. The construction ensures protection from the external environment. Three types are available: Form A (normally open), Form B (normally closed), and Form C (changeover). Form B reed switches are obtained by two methods: By using the normally closed blade of a Form C switch, or, by using a Form A switch, and biasing the contacts closed using a small block magnet. The switch is then able to re-open by the use of another stonger external magnet of opposite polarity. Sensitivity of a reed switch is measured in ampere turns (A.T.) and it should be noted that lower switch (A.T.) ratings are more sensitive as they require less magnetic field strength to operate them. Various voltage and current switching levels are available and contact plating materials can be varied to accommodate specific types of load.

OPERATION

Reed switches are operated by a magnetic field, via a magnet or a current carrying coil. When the field is removed the switch reverts to its previous state

Operation by a magnet can be achieved in a large variety of ways, either moving the magnet toward and away from the reed either perpendicularly, or parallel to the glass. Reed switches are used in a variety of Comus Group products including Proximity Switches, Float Switches and Reed Relays. They are also available in moulded packages affording protection from damage and Surface Mount styles.

CONTACT PROTECTION

Inductive Loads

A reverse voltage is generated by stored energy in an inductive load when the reed contacts open. This voltage can reach very high levels and is capable of damaging the contacts. An RC network may be used as shown below to give protection.

$$\begin{array}{c} & & & \\$$

Capacitive Loads

Unlike inductive loads, capacitive and lamp loads are prone to high inrush currents which can lead to faulty operation and even contact welding.

When switching charged capacitors (including cable capacitance) a sudden unloading can occur, the intensity of which is determined by the capacity and length of the

connecting leads to the switch. This inrush peak can be reduced by a series of resistors. The value is dependent on the particular application but should be as high as possible to ensure that the inrush current is within the allowable limits.

The above diagram illustrates a resistor/capacitor network for protecting a Reed Switch against high inrush currents. R1 and/or R2 are used depending upon circuit conditions.

Lamp Loads

With lamp load applications it is important to note that cold lamp filaments have a resistance 10 times smaller than already glowing filaments. This means that when being turned on, the lamp filaament experiences a current flow 10 times greater than when already glowing. This high inrush current can be reduced to an acceptable level through the use of a series of current-limiting resistors. Another possibility is the parallel switching of a resistor across the switch. This allows just enough current to flow to the filament to keep it warm, yet not enough to make it glow.

Lamp load with parallel or current limiting resistor across the switch

Cutting and Bending:

As the Reed Switch blades are part of the magnetic circuit of a Reed Switch shortening the leads results in increased pull-in and drop-out values.

When cutting or bending Reed Switches, it is important that the glass body should not be damaged. Therefore, the cutting or bending point should be no closer than 3mm(.118) to the glass body.

All dimensions are nominal in millimetres unless otherwise stated. If further information is required individual datasheets are available on our websites, and on CD.

As part of the groups policy of continued product improvement, specifications may change without notice. Our sales office will be pleased to help you with the latest information on our products.

The Comus Group of Companies

COMUS

REED SWITCHES		1.80 (0.071) 35.8 7 (1.41) (0.2756) 0.30 (0.0118)	1.80 (0.071) 46 7 (1.81) (0.2756) 0.40 Max. (0.0157)	20 (0.079) 35.7 10 (1.41) (0.398) 0.40 (0.0157)	2.10 (0.827) (2.1654) 11 (0.4331) (0.40 (0.0157) (0.172) (0.172) (0.172) (0.172) (0.197) (0.197)		2.30 (0.0906) 44.2 13 Max. ((1.74) (0.5118) 0.350 (0.0138)	2.20 (0.0866) 44.3 14 (1.772) (0.5512) 0.50 (0.0197)	2.30 (0.0906) 55 14.5 (2.165) (0.571) 0.50 (0.0197)		2.750 (0.108) 55.4 21 (2.181)(0.827) 0.60 (0.0236)		2.80 (0.1102) 44 (0.6496) (1.732) 0.350 (0.0138)	2.60 (0.102) 55 19 (2.165) (0.748) 0.550 (0.0217)		2.60 (0.102) (0.102) (2.165) (0.748) (0.708) (0.0276)				2.75Ø (0.108) 55.4 21 (2.181) (0.827) 0.6Ø (0.0236)	3.800 (0.1496) 55 24.5 (2.165)(0.965) 0.80 (0.0315)		↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	79 (3.1102) 52 (2.0472)		2.5 x 0.5 (0.0984 x 0.0197)	
Features		•Smallest Construction •Fastest Switching time	•Smallest Construction •Fastest Switching time	•Small •Construction Fastest Switching time	• General purpo	ose miniature	• Miniature offset	• General purpose miniature	• Lowest pull • High switch • High break	-in sensitivity ing speed down voltage	• High Power	• Vacuum High Power	 Close differential type Low sound 	 Stable, low contact resistance Suitable for dynamic measure 	 High Voltage Switching 	• High Switc	hing Capacity	Features		High Breakdown voltage	•High Switching current	 High Switching current High Breakdown voltage 	 High Breakdown voltage High Switching capacity 	 High Breakdown voltage 	• High Switching capacity	 General purpose reed switch 	
	Versions	Sub-	Micro	Micro		1	Sub-m	iniature						Miniature			1		Versions	Miniature	Con	ipact		Stand	dard		
	Supplier	ОКІ	Comus	OKI	Comus	OKI	OKI	OKI	Comus	Comus	OKI	OKI	OKI	Comus	Comus	Comus	Comus		Supplier	OKI	Comus	Comus	Comus	Comus	Comus	Comus	Com
	Туре	ORD213	GC2107	ORD211	GC2522	ORD219	ORD221	ORD228VL	GC2322	GC2314	ORD2210	ORD2210V	ORD2212	GC2722	GC2717	GC3723	GC3717		Туре	ORD229	GC3823	GC3817	GC1513	GC1517	GC1523	GC1525	HBS-7
Contact Form		A	A	A	A	A	A (offset)	A	A	A	A	A	A	A	A	A	A	Contact Form		A	A	A	A	A	A	A	A
Contact Material		Rh	Ru	Rh	Rh	Rh	Rh	Rh	Rh	Rh	Rh	Rh	Rh	Rh	Rh	Rh	Rh	Contact Material		Rh	Rh	Rh	Rh	Rh	Rh	Rh	W
Switching Capacity	Max. W/VA		10	I	6	10	10	10	10	10	DC50W / AC70VA	100	10	12	10	40	40	Switching Capacity	Max. W/VA	DC50 / AC70	60	60	120	30	120	80	50
Switching Voltage	Max. VDC/AC	24	70	24	140	100	100	100	150	400	DC200 / ACI50	DC350 / AC300	DCI00 / ACI00	230	500	230	400	Switching Voltage	Max. VDC/AC	DC350 / AC300	230	400	1500	1500	250	250	500
Switching Current	Max. A	0.1	0.3	0.1	0.5	0.5	0.3	0.5	0.5	0.5	DC1.0 / AC0.7	DCI.0	DC0.2	1.0	0.5	2.0	2.0	Switching Current	Max. A	DC0.7 / AC0.5	3.0	3.0	3.0	1.0	3.0	1.3	3.(
Carry Current	Max. A	0.3	1.0	0.3	0.8	1.0	1.0	1.0	1.0	1.0	2.5	2.5	0.5	2.0	1.0	3.0	3.0	Carry Current	Max. A	2.5	4.0	4.0	5.0	2.0	5.0	2.0	5.0
Breakdown Voltage	Min. VDC	150	150	150	200	150	150	150	200	600	250min.(PI≥20)	1000min.	150	400	1300	400	1000	Breakdown Voltage	Min. VDC	500	400	1000	3000	3000	800	800	/00
Contact Resistance	Mine Ohms	200	200	100	150	100	100	150	150	150	100	100	100	100	100	80	80	Contact Resistance	Min Ohms	100	80	80	80	80	80	80	10
	MIN. UNMS	10, 40	1010	10 40	1010	10, 20	10'	10, 50		10''		1010		10''	10''	10"	10"		MIN. UNMS		10''	10"	10''	10"	10"	10"	10
Puil-in Sensitivity	AI Min AT	IU - 40	IU - 30	10 - 40 c	IU - 40 c	10 - 30 E	10 - 30 r	10 - 50 r	IU - 35	r - 10 - 35	15 - 00	20 - 00		50 - 50 r	30 - 30 F	30 - 30	JU - JU	Puil-In Sensitivity	AI Min AT	20 - 00	- UC	30 - 70	75 - 75 20	25 - 25 25	75 - 75	26 - 21	90 -
	Max ms	0.3	03	0.3	5	0.4	0.4	0.4	2	ر 8 ا	0.6	0.6	0.4	2.0	2.0	20	2.0	Operate Time	Max ms	0.6	75	75	3.5	23	30	23	40
Bounce Time	Max ms	0.3	0.05	0.3	0.3	0.3	0.5	0.1	0.2	0.2	0.0	0.0	1.0	0.5	0.5	0.5	0.5	Bounce Time	Max ms	0.0	0.5	0.5	0.5	0.5	0.5	0.5	
Release Time	Max ms	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.10	0.10	0.10	0.10	Release Time	Max ms	0.05	-	0.0	0.5	0.5	0.5	0.5	0
Resonant Frequency	Typ. Hz	11000	7500	7500	6000	5900	2750	5000	5000	5000	2500	2500	3900	2900	2900	4200	4200	Resonant Frequency	Typ. Hz	2500	2400	2400	900	900	900	900	-
Operating Frequency	Max. Hz	500	500	500	400	500	500	500	200	200	500	500	500	200	200	300	300	Operating Frequency	Max. Hz	500	200	200	100	100	100	100	5
Vibration (10-1000Hz)	g	20	30	20	35	20	20	20	35	35	20	20	20	35	35	35	35	Vibration (10-1000H	z) g	20	35	35	35	35	35	35	3!
Shock (IIms)	g	30	50	30	50	30	30	30	50	50	30	30	30	50	50	50	50	Shock (11ms)	g	30	50	50	50	50	50	50	4(
Capacitance									0.7	0.7	0.0	0.5	0.5	0.5	0.5	0.5	0.5	Caracitanaa		0.5	0.5	0.5					
cupucituitee	Тур. рҒ	0.4	0.2	0.2	0.5	0.3	0.3	0.3	U. <i>1</i>	0.1	0.5	0.5	0.5	0.5	0.5	0.5	0.5	Capacitance	iyp. pr	0.5	0.5	0.5	0.8	0.8	0.8	0.8	0
Operating Temp. Range	Typ. pF Deg. °C	0.4	0.2	0.2 -40 +125	0.5 -40 +125	0.3 -40 +125	0.3 -40 +125	0.3 -40 +125	-40 +125	-40 +125	-40 + 125	-40 + 125	-40 + 125	-40 + 125	-40 + 125	-40 + 125	-40 + 125	Operating Temp. Ran	ge Deg. °C	-40 + 125	-40 + 125	-40 + 125	0.8	0.8 -40 + 125	0.8 -40 + 125	0.8 -40 + 125	0 -55 +

COMUS The Comus Group of Companies

COMUS The Comus Group of Companies

'.